
    -2iA                       d dl mZ d dlmZmZmZmZ d dlmZm	Z	 d dl
Z
ddlmZ ddlmZ ddlmZmZmZmZmZmZmZmZ dd	lmZmZmZ dd
lmZ ddlmZm Z  ddl!m"Z"m#Z# ddl$m%Z%m&Z& ddl'm(Z( ddl)m*Z* ddl+m,Z, ddgZ- G d de          Z. G d de           Z/ G d d          Z0 G d d          Z1 G d d          Z2 G d d          Z3dS )    )annotations)DictUnionIterableOptional)LiteraloverloadN   )_legacy_response)completion_create_params)BodyOmitQueryHeadersNotGivenSequenceNotStromit	not_given)required_argsmaybe_transformasync_maybe_transform)cached_property)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)StreamAsyncStream)make_request_options)
Completion) ChatCompletionStreamOptionsParamCompletionsAsyncCompletionsc                  f   e Zd Zed9d            Zed:d            Zeeeeeeeeeeeeeeeeedddedd;d.            Z	eeeeeeeeeeeeeeeeddded/d<d2            Z	eeeeeeeeeeeeeeeeddded/d=d5            Z	 e
dd
gg d6          eeeeeeeeeeeeeeeedddedd>d8            Z	dS )?r"   returnCompletionsWithRawResponsec                     t          |           S a  
        This property can be used as a prefix for any HTTP method call to return
        the raw response object instead of the parsed content.

        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
        )r&   selfs    [/var/www/html/pixcura-vrs/venv/lib/python3.11/site-packages/openai/resources/completions.pywith_raw_responsezCompletions.with_raw_response   s     *$///     CompletionsWithStreamingResponsec                     t          |           S z
        An alternative to `.with_raw_response` that doesn't eagerly read the response body.

        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
        )r.   r)   s    r+   with_streaming_responsez#Completions.with_streaming_response&   s     0555r-   Nbest_ofechofrequency_penalty
logit_biaslogprobs
max_tokensnpresence_penaltyseedstopstreamstream_optionssuffixtemperaturetop_puserextra_headersextra_query
extra_bodytimeoutmodelKUnion[str, Literal['gpt-3.5-turbo-instruct', 'davinci-002', 'babbage-002']]promptMUnion[str, SequenceNotStr[str], Iterable[int], Iterable[Iterable[int]], None]r3   Optional[int] | Omitr4   Optional[bool] | Omitr5   Optional[float] | Omitr6   Optional[Dict[str, int]] | Omitr7   r8   r9   r:   r;   r<   6Union[Optional[str], SequenceNotStr[str], None] | Omitr=   Optional[Literal[False]] | Omitr>   1Optional[ChatCompletionStreamOptionsParam] | Omitr?   Optional[str] | Omitr@   rA   rB   
str | OmitrC   Headers | NonerD   Query | NonerE   Body | NonerF   'float | httpx.Timeout | None | NotGivenr    c                   dS u3  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models) for descriptions of
              them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Not supported with latest reasoning models `o3` and `o4-mini`.

              Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        N r*   rG   rI   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   s                          r+   createzCompletions.create/   
    r 	r-   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r>   r?   r@   rA   rB   rC   rD   rE   rF   Literal[True]Stream[Completion]c                   dS u3  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models) for descriptions of
              them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Not supported with latest reasoning models `o3` and `o4-mini`.

              Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        NrZ   r*   rG   rI   r=   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r>   r?   r@   rA   rB   rC   rD   rE   rF   s                          r+   r\   zCompletions.create   r]   r-   boolCompletion | Stream[Completion]c                   dS rb   rZ   rc   s                          r+   r\   zCompletions.createe  r]   r-   rG   rI   r=   /Optional[Literal[False]] | Literal[True] | Omitc          
     B   |                      dt          i d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|i|rt          j        nt          j                  t          ||||          t          |pdt          t                             S Nz/completionsrG   rI   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   )rC   rD   rE   rF   F)bodyoptionscast_tor=   
stream_cls)_postr   r   CompletionCreateParamsStreaming"CompletionCreateParamsNonStreamingr   r    r   r[   s                          r+   r\   zCompletions.create   s]   : zz Uf w D	
 (): !*  !*  '(8 D D f %n f  ";!" U#$ D% * Q(HH-P/ 2 )+Q[el   ?Uj)A  !
 !
 !	
r-   )r%   r&   )r%   r.   .rG   rH   rI   rJ   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r=   rP   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   r    ).rG   rH   rI   rJ   r=   r_   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   r`   ).rG   rH   rI   rJ   r=   rd   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   re   ).rG   rH   rI   rJ   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r=   rh   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   re   __name__
__module____qualname__r   r,   r1   r	   r   r   r\   r   rZ   r-   r+   r"   r"      s#       0 0 0 _0 6 6 6 _6  )-&*486:)-+/"&37%)GK26LP'+.2(, )-$("&;D5X X X X X XXt  )-&*486:)-+/"&37%)GKLP'+.2(, )-$("&;D5X X X X X XXt  )-&*486:)-+/"&37%)GKLP'+.2(, )-$("&;D5X X X X X XXt ]GX&(E(E(EFF )-&*486:)-+/"&37%)GKBFLP'+.2(, )-$("&;D5=
 =
 =
 =
 =
 GF=
 =
 =
r-   c                  f   e Zd Zed9d            Zed:d            Zeeeeeeeeeeeeeeeeedddedd;d.            Z	eeeeeeeeeeeeeeeeddded/d<d2            Z	eeeeeeeeeeeeeeeeddded/d=d5            Z	 e
dd
gg d6          eeeeeeeeeeeeeeeedddedd>d8            Z	dS )?r#   r%   AsyncCompletionsWithRawResponsec                     t          |           S r(   )rx   r)   s    r+   r,   z"AsyncCompletions.with_raw_responseB  s     /t444r-   %AsyncCompletionsWithStreamingResponsec                     t          |           S r0   )rz   r)   s    r+   r1   z(AsyncCompletions.with_streaming_responseL  s     5T:::r-   Nr2   rG   rH   rI   rJ   r3   rK   r4   rL   r5   rM   r6   rN   r7   r8   r9   r:   r;   r<   rO   r=   rP   r>   rQ   r?   rR   r@   rA   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r    c               
   K   dS rY   rZ   r[   s                          r+   r\   zAsyncCompletions.createU        r 	r-   r^   r_   AsyncStream[Completion]c               
   K   dS rb   rZ   rc   s                          r+   r\   zAsyncCompletions.create  r}   r-   rd   $Completion | AsyncStream[Completion]c               
   K   dS rb   rZ   rc   s                          r+   r\   zAsyncCompletions.create  r}   r-   rg   rh   c          
     ^  K   |                      dt          i d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|i|rt          j        nt          j                   d {V t          ||||          t          |pdt          t                              d {V S rj   )ro   r   r   rp   rq   r   r    r   r[   s                          r+   r\   zAsyncCompletions.create&  s     : ZZ,Uf w D	
 (): !*  !*  '(8 D D f %n f  ";!" U#$ D% * Q(HH-P/       2 )+Q[el   ?U":.A   !
 !
 !
 !
 !
 !
 !
 !
 !	
r-   )r%   rx   )r%   rz   rr   ).rG   rH   rI   rJ   r=   r_   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   r~   ).rG   rH   rI   rJ   r=   rd   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   r   ).rG   rH   rI   rJ   r3   rK   r4   rL   r5   rM   r6   rN   r7   rK   r8   rK   r9   rK   r:   rM   r;   rK   r<   rO   r=   rh   r>   rQ   r?   rR   r@   rM   rA   rM   rB   rS   rC   rT   rD   rU   rE   rV   rF   rW   r%   r   rs   rZ   r-   r+   r#   r#   A  s#       5 5 5 _5 ; ; ; _;  )-&*486:)-+/"&37%)GK26LP'+.2(, )-$("&;D5X X X X X XXt  )-&*486:)-+/"&37%)GKLP'+.2(, )-$("&;D5X X X X X XXt  )-&*486:)-+/"&37%)GKLP'+.2(, )-$("&;D5X X X X X XXt ]GX&(E(E(EFF )-&*486:)-+/"&37%)GKBFLP'+.2(, )-$("&;D5=
 =
 =
 =
 =
 GF=
 =
 =
r-   c                      e Zd ZddZdS )r&   completionsr"   r%   Nonec                P    || _         t          j        |j                  | _        d S N)_completionsr   to_raw_response_wrapperr\   r*   r   s     r+   __init__z#CompletionsWithRawResponse.__init__h  s(    '&>
 
r-   Nr   r"   r%   r   rt   ru   rv   r   rZ   r-   r+   r&   r&   g  (        
 
 
 
 
 
r-   r&   c                      e Zd ZddZdS )rx   r   r#   r%   r   c                P    || _         t          j        |j                  | _        d S r   )r   r   async_to_raw_response_wrapperr\   r   s     r+   r   z(AsyncCompletionsWithRawResponse.__init__q  s(    '&D
 
r-   Nr   r#   r%   r   r   rZ   r-   r+   rx   rx   p  r   r-   rx   c                      e Zd ZddZdS )r.   r   r"   r%   r   c                F    || _         t          |j                  | _        d S r   )r   r   r\   r   s     r+   r   z)CompletionsWithStreamingResponse.__init__z  s%    '2
 
r-   Nr   r   rZ   r-   r+   r.   r.   y  r   r-   r.   c                      e Zd ZddZdS )rz   r   r#   r%   r   c                F    || _         t          |j                  | _        d S r   )r   r   r\   r   s     r+   r   z.AsyncCompletionsWithStreamingResponse.__init__  s%    '8
 
r-   Nr   r   rZ   r-   r+   rz   rz     r   r-   rz   )4
__future__r   typingr   r   r   r   typing_extensionsr   r	   httpx r   typesr   _typesr   r   r   r   r   r   r   r   _utilsr   r   r   _compatr   	_resourcer   r   	_responser   r   
_streamingr   r   _base_clientr   types.completionr    /types.chat.chat_completion_stream_options_paramr!   __all__r"   r#   r&   rx   r.   rz   rZ   r-   r+   <module>r      s   # " " " " " 2 2 2 2 2 2 2 2 2 2 2 2 / / / / / / / /        , , , , , , Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z J J J J J J J J J J % % % % % % 9 9 9 9 9 9 9 9 X X X X X X X X , , , , , , , ,      * ) ) ) ) ) ^ ^ ^ ^ ^ ^,
-c
 c
 c
 c
 c
/ c
 c
 c
Lc
 c
 c
 c
 c
' c
 c
 c
L
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
r-   